
Modeling the Object-Oriented Space
Through Validated Measures

Ralph D. Neal

West Virginia University

NASA/WVU Software Research Laboratory

100 University Drive

Fairmont, WV 26554

304-367-8355

rneal@research.ivv.nasa.gov

Abstract—In order to truly understand
software and the software development
process, software measurement must be better
understood. A beginning step toward a better
understanding of software measurement is the
categorization of the measurements by some
meaningful taxonomy. The most meaningful
taxonomy would capture the basic nature of
the object-oriented (O-O) space. The
interesting characteristics of object-oriented
software offer a starting point for such a
categorization of measures. A taxonomy has
been developed based upon fourteen
characteristics of object-oriented software
gathered from the literature. This taxonomy
allows us to easily see gaps and redundancies
in the O-O measures. The taxonomy also
clearly differentiates among taxa so that there
is no ambiguity as to the taxon to which a
measure belongs. The taxonomy has been
populated with thirty-two measures that have
been validated in the narrow sense of Fenton
[9] using measurement theory with Zuse’s
[30] augmentation.1

TABLE OF CONTENTS

1. INTRODUCTION
2. THE OBJECT-ORIENTED SPACE

1 Funded in part by NASA Cooperative
Agreement NCCW-0040

3. SOFTWARE MEASUREMENT
4. THE IMPORTANCE OF VALIDATION
5. MEASUREMENT THEORY
6. THE MEASURES
7. THE TAXONOMY
8. CONCLUSIONS

1. INTRODUCTION

Software development historically has been
the arena of the artist. Artistically developed
code often resulted in arcane algorithms or
spaghetti code that was unintelligible to those
who had to perform maintenance. Initially
only very primitive measures such as lines of
code (LOC) and development time per stage
of the development life cycle were collected.
Projects often exceeded estimated time and
budget. In the pursuit of greater productivity,
software development evolved into software
engineering. Part of the software engineering
concept is the idea that the product should be
controllable. Control of a process or product
requires that the process or product is
measurable; therefore, control of software
requires software measures [2].

Software and software development are
extremely complex. We should not expect to
measure something so complex with one, two,
or even a dozen measures. Measures have to
be developed to allow us to view software

from many perspectives. Many object-oriented
(O-O) metrics have been proposed in the
literature, e.g., [1], [6], [7], [16], and [17]. To
better understand the contribution of these
metrics, it is necessary to categorize them so
that we can better understand the dimensions
of O-O software. No one has yet organized
these metrics in any way that models the O-O
space. Until we understand the many
dimensions of O-O software, we cannot truly
understand the product. It does no good to
measure the process if the product is not
measured. Being the best at producing an
inferior product does not define a quality
process. To facilitate understanding of the
product, this paper proposes a taxonomy that
not only allows us to classify measures but
also helps us model the object-oriented space.

Definition of Terms and Notation

Complexity,
inter-structural

Complexity introduced into
the structure of a class by
the interaction with other
classes.

Complexity,
intra-structural

Complexity introduced into
the structure of a class by
the interaction of methods
within the class.

Complexity,
psychological

Non-structural concepts
which make understanding
of the entity being measured
more difficult.

Cohesion The extent to which a class
is self-contained.

Coupling The extent to which a class
utilizes attributes outside
itself.

Entity An object or an event, e.g., a
developed program or the
development process.

Measure (n.) A numeric representation
that has been validated to
measure some dimension of
some entity -- in our case,
software.

Measurement The process of empirical,
objective assignment of
numbers to the properties of
objects and events in the
real world in such a way as
to describe them [Zuse,
1991].

Measurement
level

Defines the scope of the
measurement by naming the
thing being measured, i.e.,
variable, method, class,
program, or system.

Metric A numeric representation
(not necessarily validated)
that purports to measure
some dimension of
software.

Program A collection of classes to
perform a specific function,
e.g., a payroll deduction
calculation program.

Ratio scale Represents ratios of a
property, i.e., ratio scales
allow statements such as "a
is twice as complex as b"
(iff (a)=2 (b)); assigned to
measures that fulfill the
extensive structure.

Ratio’ scale A weak ratio scale; assigned
to measures that fulfill the
concatenation rules of the
set theory union operation.

Software
dimension

An interesting characteristic
of the software.
Dimensions are the
characteristics which we are
interested in measuring.

System A coordinated collection of
programs to carry out a
specific procedure, e.g., a
payroll system.

Taxa Plural of taxon.
Taxon A taxonomic category or

unit.
Taxonomy An arrangement of items

(measures) onto natural,

related groups based on
factors common to each.

 E observed relational system (Empirical
Relational System: A=(A,R1,...,Rn))

 3 some property of software which we
wish to measure.

 R numerical relational system (Formal
Relational System: B=(B,S1,...,Sn).).

 À signifies is larger than (or is preferred
to).

 ∼ signifies is equivalent to (or is
indifferent to).

→ onto

 Y necessarily leads to.

 � binary operation in the empirical
relational system, usually designated
concatenation.

2. THE OBJECT-ORIENTED SPACE

Authors have not been in agreement about the
characteristics that identify the object-oriented
approach. Henderson-Sellers [12] listed
information hiding, encapsulation, objects,
classification, classes, abstraction, inheritance,
polymorphism, dynamic binding, persistence,
and composition as having been chosen by at
least one author as a defining aspect of object-
orientation. Rumbaugh, et al. [20] added
identity, Smith [22] added single type and
Sully [23] added the unit building block to this
list of defining aspects. These aspects of
object-orientation are not disjoint. In fact there
is much overlapping of aspects as different
authors grouped sub-aspects differently and
created their own individual groupings, each
with a unique aspect name. It should be
obvious from the preceding list that there are
many dimensions to O-O software. It should
also be noted that this list may not be
exhaustive.

The Tegarden, et al., [24] model of object-
oriented systems complexity measurement
defines object-oriented systems as looking

different from different viewpoints. This
model defines four levels of software strata.
[18] adds a fifth level of strata. Building on
this model, the object-oriented space can be
represented as a matrix that partitions the
space into levels of granularity. The software
levels that a software developer might want to
measure (in order of granularity) are:
variables, methods, classes, programs, and
systems. Each level of granularity exhibits
characteristics that contribute to the character
of that level. Designating the five levels of
granularity as columns and fourteen
dimensions of O-O software that have been
gleaned from the literature as rows, The
Object-Oriented Space matrix (see Table 1 for
axes headings) is proposed. This model forces
a reasonable consensus upon measurers.

Table 1: The Object-Oriented Space

Software
Dimensions
(column headings)

Levels of granularity
(row headings)

Clarity Variable

Cohesion Method

Coupling Class

Complexity,
inter-structural

Program

Complexity,
intra-structural

System

Complexity,
psychological
Design

Encapsulation

Inheritance

Information hiding

Polymorphism

Reuse

Size

Specialization

In order to measure object-oriented software
the measurer will need to be aware of the
characteristics of O-O software and of the
different levels of granularity inherent in the
O-O paradigm. This model parses the object-
oriented space into understandable,
unambiguous segments and allows the
measurer to reason about the object-oriented
space in a meaningful way.

3. SOFTWARE MEASUREMENT

Many researchers have asserted the
importance of software measurement.
Vollman [26] wrote of the importance of
software measurement to society while Grady
and Caswell [11] and Chidamber and Kemerer
[7] described its importance to management.

Measurement is the process whereby numbers
or symbols are assigned to dimensions of
entities in such a manner as to describe the
dimension in a meaningful way. An entity
may be a thing or an event, e.g., a person, a
play, a developed program or the development
process. A dimension is a trait of the entity,
such as the height of a person, the cost of a
play, or the length of the development process.
Obviously, the entity and the dimension to be
measured must be specified in advance.
Measurements cannot be taken and then
applied to just any dimensions. Unfortunately
this is exactly what the software development
community has been doing [10], e.g., lines-of-
code, being a valid measurement of size, has
been used to “measure” the complexity of
programs [28].

An intuitive and empirical assessment of the
entities and dimensions must be preserved by
the measurement (the assignment of numbers
and symbols). For example, when measuring
the height of two people the taller person

should be assigned a larger number than the
shorter person. Notice that the unit of
measure, (feet, inches, meters) has no effect
on this rule. Likewise, when measuring
software complexity, the more complex
program should be assigned a larger number
than the less complex program. This is
discussed in depth in the section on
Measurement Theory.

Because people observe things differently
(and often intuitively feel differently about
things), a model is usually defined for the
entities and dimensions to be measured. The
model requires everyone to look at the subject
from the same viewpoint. Fenton [10] uses the
example of human height. Should posture be
taken into consideration when measuring
human height? Should shoes be allowed?
Should the measurement be made to the top of
the head or the top of the hair? The model
forces a reasonable consensus upon the
measurers. This idea is applied to software
measurement in the section on The Object-
Oriented Space.

There are two types of measurement: direct
measurement of a dimension requires only that
dimension; indirect measurement of a
dimension requires that one or more other
dimensions be measured. Because the
dimensions of greatest interest, e.g., quality
and reliability, are often external to the entity
being measured, and therefore very hard to
measure directly, indirect measurement
usually achieves more useful results [10];
[15]. That is, internal dimensions e.g., verbal
skills, are measured, to assess external
dimensions, e.g., intelligence quotient (IQ). Or
in the case of software, the number of known
defects are counted to assess quality.

4. THE IMPORTANCE OF VALIDATION

Fenton [10] argued that much of the software
measurement work published to date is

scientifically flawed. This is not a revelation.
Software metrics usually have been taken at
face value. Because many people believe that
any quantification is better than no
quantification at all, just counting the lines of
code (for example) was enough to give
management the feeling of doing something to
try to gain control of the software
development process. After obtaining the
quantification, management had to try to
decide just what was described and how the
development process was influenced. Fenton
[9] stated that it is often the case that the
general lack of validation of software metrics
is the reason that managers do not know what
to do with the numbers with which they are
presented.

Fenton is not the only author who has
observed this lack of scientific precision.
Baker, et al., [2] said as much when they
wrote that research in software metrics often is
suspect because of a lack of theoretical rigor.
Li and Henry [16] argued that validation is
necessary for the effective use of software
metrics. Schneidewind [21] stated that metrics
must be validated to determine whether they
measure what it is they are alleged to measure.
Weyuker [27] stated that existing and
proposed software measures must be subjected
to an explicit and formal analysis to define the
soundness of their properties.

Fenton [9] described two meanings of
validation. Validation in the narrow sense is
the rigorous process of ensuring that the
measure properly represents the intended
dimension of the software, i.e., verify that the
measure is theoretically sound. Validation in
the wide sense is the authentication of a
prediction system using verified measures of
the software. Accurate prediction relies on
careful measurement of the predictive
dimensions. A model which accurately
measures the dimensions is necessary but not
sufficient for building an accurate prediction

system. The model, along with procedures for
determining the parameters to feed the model,
and procedures to elucidate the results all are
necessary to build an accurate prediction
system [9].

In the past, validation in the wide sense has
been conducted without first carrying out
validation in the narrow sense. Validation in
the narrow sense is a necessary step before
measures can be used to predict such
managerial concerns as cost, reliability, and
productivity.

"Very few metrics have been proposed
to measure object oriented systems,
and the proposed ones have not been
validated." [16]

Since Li and Henry’s statement, there has
been an explosion of object-oriented software
metrics. The recent flood of object-oriented
software metrics (Chen and Lu [6]; Li and
Henry [16]; Chidamber and Kemerer [7]; and
Lorenz and Kidd [17]) has hit the scene with
limited validation beyond regression analysis
of observed behavior. Chidamber and
Kemerer dedicated a sub-section to
measurement theory within the section
devoted to the research problem. They
explained empirical relation systems, formal
relational systems, mapping from the
empirical system to the relational system, and
the properties of the weak order. However,
they made no reference to measurement theory
in the section on metrics evaluation criteria.
They made no attempt to assign a scale to
their metrics nor to evaluate them vis-a-vis the
representation and uniqueness theorems of
measurement theory.

5. MEASUREMENT THEORY

So we have seen, many metrics have been
used without the benefit of any theoretical
validation. Fenton [9] writes that measures

must be validated in the narrow sense using
measurement theory. Fenton’s narrow
validation is required to establish the scale of
the measure in order to know which statistics
can be legitimately applied. Briand, et al. [3]
write that measurement theory, while valid for
the structured paradigm, does not migrate to
the object-oriented paradigm. Zuse [30] writes
that the Dempster-Shafer Function of Belief
allows us to substitute set theory for the
intensive structure of measurement theory to
validate measures in the narrow sense of
Fenton.

The task of measurement theory is to
categorize and describe the types of
measurement. There are two fundamental
problems in measurement theory; the first is
the representation problem. The
representation problem is to find sufficient
conditions for the existence of a mapping from
an observed system to a given mathematical
system. More formally, given a particular
empirical relational system E and a numerical
relational system R, find sufficient conditions
for the existence of a mapping from E into R.
The sufficient conditions, referred to as
representation axioms, specify conditions
under which measurement can be performed.

Fenton [9] used human height to explain the
representation problem. Suppose three people
are present. It may be observed that Tom is the
tallest of the three, Dick is the shortest of the
three, and Harry is taller than Dick and shorter
than Tom. Thus the taller than relationship
among the three people has been empirically
established. Any measurement taken of the
height of these three people must result in
numbers or symbols that preserve this
relationship. If it is further observed that Tom
is much taller than Dick, then this relationship
must also be preserved by any measurement
taken. That is, the numbers or symbols used to
represent the heights of Tom and Dick must
convey to the observer the fact that Tom is

indeed much taller than Dick. If it is further
observed that Dick towers over Tom when
seated on Harry’s shoulders, then another
relationship has been established which must
also be preserved by any measurement taken.
This relationship might be represented in the
real number system by (.7Dick + .8Harry >
Tom). Any numbers that resulted from
measuring the height of Tom, Dick, and Harry
would have to satisfy the observation
represented by our formula. Thus the
measurement represents our empirical
findings.

Another aspect of the representation problem
is pointed out by Weyuker [27]. How unique
is the result of the measurement? A
measurement system must provide results that
enable us to distinguish one class of entity
from another class of entity. If a measurement
groups all entities into only two or three
classes, two entities that are clearly different
may end up in the same class, i.e., it may be
impossible to discriminate between two
entities that should be in different classes.
Using Tom, Dick, and Harry again, it is easy
to see that measuring their height in miles is
less representational than measuring their
height in inches, i.e., measured to the closest
mile, they are all the same height.

The other fundamental problem of
measurement theory is the uniqueness
problem. Uniqueness theorems define the
properties and valid processes of different
measurement systems and tell us what type of
scale results from the measurement system.
Additionally, uniqueness theorems contribute
to a theory of scales. According to this theory
of scales, the scale used dictates the
meaningfulness of statements made about
measures based on the scale. [14; 19]

Let us consider two statements: 1) This rock
weighs twice as much as that rock; 2) This
rock is twice as hot as that rock. The first

statement seems to make sense but the second
statement may not. The ratio of weights is the
same regardless of the unit of measurement
while the ratio of temperature depends on the
unit of measurement. Weight is a ratio scale,
therefore, regardless of whether the weights of
the rocks are measured in grams or ounces the
ratio of the two is a constant. Fahrenheit and
Celsius temperatures are interval scales, i.e.,
they exhibit uniform distance between integer
points but have no natural origin. Because
Fahrenheit and Celsius are interval scales, the
ratio of the temperatures of the rocks
measured on the Fahrenheit scale is different
from the ratio when the temperatures are
measured on the Celsius scale. A statement
involving numerical scales is meaningful if
the truth of the statement is maintained when
the scale involved is replaced by another
(admissible) scale.

The Empirical/Formal Relational System

A relational system is a way of relating one
entity (or one event) of a set to another entity
(or event) of the same set. In the physical
sciences the relations take the form longer
than, heavier than, of equal volume, etc. In the
social sciences (and thus in software
measurement) the relations take the form is
preferred to, is not preferred to, is at least as
good as.

Definition 1: The ordinal relational
system is an ordered tuple
(A,R1,...,Rn) where A is a nonempty
set of entities and the Ri, i=1,...,n are
k-ary relations on A. [28]

The Empirical Relational System is E =
(A,R1,...,Rn) where A is a non-empty set of
dimensions that are to be measured and the Ri
are k-ary empirical relations on A as described
above.

The Formal Relational System is R =
(B,S1,...,Sn) where B is a non-empty set of
formal entities (for example, the real numbers)
and the Si are k-ary relations on B such as
“ equal” or “ greater than.”

Measurement is a mapping M: A→B such that
M preserves the relations in A, i.e., let B be
the real numbers, then, if the observed entity
a1 is larger than (or preferred to) observed
entity a2, then the formal entity b1 must be
greater than formal entity b2. Let À denote is
larger than (or is preferred to) then M is a
valid mapping from A to B iff a1 À a2 Y b1 >
b2.

The relational systems A and B along with the
mapping M are sufficient to measure entities
on the ordinal scale. If it is enough to know
that program module 1 is preferred to program
module 2 based on some measurement, then
no further structure is needed. However,
modules often are combined to create a
composite entity which is different from its
parts. In order to measure composite entities
one must either recalculate the empirical value
of the composite entity or combine the
empirical values of the parts in some
meaningful way.

The Extensive Structure

The extensive structure is an expansion of the
ordinal relation system to include binary
processes on the entities of the set. The binary
process in the empirical relational system
usually is designated concatenation, denoted
by �. The usual manifestation of the binary
process in the formal relational system is
addition (+) although multiplication may be
the proper process under some circumstances.

Definition 2: The extensive relational
system is an ordered tuple
(A,R1,...,Rn, �1,...,�m) where A is a
nonempty set of entities, the Ri,

i=1,...,n are k-ary relations on A and
the �j, j=1,...,m are closed binary
operations. [28]

The extensive structure is required to measure
entities on the interval or ratio scales. Let b1,
b2, b3, b4, be the formal measures associated
with a1, a2, a3, a4. Under the extensive
structure, M is a homomorphism from A to B
iff a1�a2 À a3�a4 Y b1+b2 > b3+b4, i.e.,
the observed relationship of the concatenated
entities must be preserved by the mapping to
the formal relationship. Note that addition is
assumed to be the concatenation operator.

Criticism of the Extensive Structure

Recent work has questioned the applicability
of the extensive structure to object-oriented
measures [3], [4], [5], [29], and [30].
Particularly important is the question: must
the measurement of an entity formed by the
concatenation of two modules equal the sum
of the measurements of the independent
modules before concatenation, i.e., let b1, b2,
be the formal measures associated with a1, a2;
is it necessary that a1�a2 equates to b1+b2?

The result of combining two classes (C1, C2)
is a single class (C3) which combines all of
the properties of the two initial classes. There
are four ways that C3 might be formed [13]:

1) C3 contains C1 and C2 and the names of
the properties which appear in both have been
differentiated to avoid ambiguities. In this
instance, the extensive structure holds;

2) C3 contains both C1 and C2 but the
instance variables which appear in both are
hidden in one and the methods which appear
in both are overloaded in that same one. All
properties of both classes are present,
therefore, the extensive structure holds;

3) C3 contains C1 and C2 as subobjects and
does not present their properties to the outside
world. Again, all properties are present, and
yet again, the extensive structure holds;

4) C3 is created by merging. Let C1 be a
class with the properties (methods and
instance variables) a, b, c and C2 be a class
with properties a, d, e. Let C3 = C1 � C2,
then the properties of C3 are a, b, c, d, e. This
is the definition of the union operation in set
theory. Object-oriented classes then may be
viewed as sets with the methods and instance
variables of the class being the elements of the
set [30].

Concatenation of classes when C1 and C2 are
merged should follow the rules of set theory.
Whenever set theory is used, instead of the
extensive structure, to test for a scale above
the level of the ordinal scale [30] we will call
this the ratio’ scale. This is a weaker test than
the extensive structure test. The extensive
structure dominates the set theory union
structure. That is, the set theory union
structure always holds if the extensive
structure holds, and the set theory union
structure may hold when the extensive
structure does not.

The question really is: if a measure is ordinal
but fails the extensive structure, is the measure
strictly ordinal or would much valuable data
be lost by not considering the measure as a
higher order scale [25 as cited by 3]?
Parametric statistics have been shown to be
more robust in the face of scale , i.e., more
accurate when the wrong scale has been
assumed, than nonparametric statistics [4].
Therefore, there are two reasons to extend the
scale of a measure to a higher level. The
measure may be more powerful than the
ordinal scale will reflect and the parametric
statistics that we wish to use to take advantage
of this power are forgiving of
miscategorization of scale.

6. THE MEASURES

The measures taken from [6], [7], [16], [17],
and [18] have been validated to be ratio (or
ratio’) scales. The metrics from Tegarden, et
al., have been taken from their paper without
validation. They have been included to show
that work is being done at the variable and
method levels.

This is in no way all of the metrics offered by
Tegarden, et al. None of their proposed
metrics have been included for cells for which
validated measures already exist. Also, some
of their metrics were merely observations, e.g.,
“The complexity measured by the fan-in and
fan-out measures increase intervariable
complexity and the variable polymorphism
measure decreases intervariable complexity.”
This approach does not convey enough
information to allow us to place the variables
in order by complexity, i.e., this approach
does not lead to an ordinal scale.

Validated Measures

(AIM) Average number of instance methods
per class [17]

(AIV) Average number of instance variables
[17]

(AMS) Average method size [17]
(CRE) Number of times a class is reused [17]
(CLM) Average number of comment lines per

method [17]
(DAC) Density of abstract classes [18]
(DCBO) Degree of coupling between classes

[18]
(DCWO) Degree of coupling within classes

[18]
(DMC) Density of methodological

cohesiveness [18]
(FFU) Use of friend functions [17]
(FOC) Percentage of function-oriented code

[17]
(IMC) Intraclass method calls [18]

(LOC) Lines of code [17]: Number of
statements (NOS) [17]: Number of
semicolons in a class (SIZE1) [16]

(MAA) Messages and arguments [18]
(MPC) Message-passing coupling [16]
(NAC) Number of abstract classes [17]
(NCM) Number of class methods in a class

[17]
(NIM) Number of instance methods in a class

[17]
(NIV) Number of instance variables in a class

[17]
(NMA) Number of methods added by a

subclass [17]
(NOM) Number of local methods [16]
(PIM) Number of public instance methods in a

class [17]
(PMI) Potential methods inherited [18]
(PMIS) Proportion of methods inherited by a

subclass [18]
(POM) Proportion of overriding methods in a

subclass [18]
(PRC) Number of problem reports per class or

contract [17]
(PrIM) Number of private instance methods

[18]
(RFC) Response for a class [7]
(RUS) Reuse [6]
(SML) Strings of message-links [18]
(UCGU) Unnecessary coupling through global

usage [18]
(WMC) Weighted methods per class [7]

Metrics Not Yet Validated

(I/Ov) Invoked object variables [24]
(mfd) Method fan down [24]
(mfi) Method fan in [24]
(mfo) Method fan out [24]
(mp) Method polymorphism [24]
(vfd) Variable fan down [24]
(vfi) Variable fan in [24]
(vfo) Variable fan out [24]
(vp) Variable polymorphism [24]

7. THE TAXONOMY

As has been stated, a beginning step toward
understanding software measurement is the
categorization of the measurements by some
meaningful taxonomy. Archer and Stinson [1]
propose a taxonomy that places a metric in
one (or more) of five taxa, viz., system,
coupling and uses, inheritance, class, and
method. It is unclear where a measure of say
coupling among methods, as in [24], would be
classified in this taxonomy. The coarseness of
this taxonomy also causes metrics for different
software artifacts to be grouped together, e.g.,
if all coupling metrics are classified as
“ coupling and uses” metrics, then measures
of classes would be lumped together with
measures of methods and measures of
variables, again as in [24]. A useful taxonomy
clearly should differentiate among taxa so that
there is no ambiguity as to the taxon to which
a measure belongs. If we are to learn about the
object-oriented space, it must be possible for
diversified measurers to reach the same
conclusions given the same data. A taxonomy
should at least allow each measurer the ability
to start reasoning from the same sensibility.

The Object-Oriented Space matrix offers a
starting point for such a categorization of
measures. By filling in the cells of the Object-
Oriented Space matrix with the measures from
section 6, the matrix becomes the Object-
Oriented Measures Taxonomy (see Table 2).
This taxonomy includes all of the known,
interesting characteristics of software and
clearly defines where any measure fits among
the taxa without worry of overlap or
ambiguity. If a measure cannot be placed
easily into one and only one taxon, the
measure may not be well understood. A
measure that is not well understood is useless
and costly to the measurer and should be
discarded. If a measure cannot be placed
easily into any existing taxon, the taxonomy
may be incomplete. An incomplete taxonomy
calls for more research.

The thirty-two metrics with which the table
has been populated have been validated in the
narrow sense of Fenton [9] using measurement
theory with Zuse’s [30] augmentation [18].
Fifty measures found in the literature ([6], [7],
[16], and [17]) were subjected to validation
via measurement theory. Twenty of these
measures were found to be valid in the narrow
sense of Fenton [9]. Every measure that
passed validation in the narrow sense fit
unambiguously into this taxonomy. Twelve
new measures have been validated and added
to these [18]. An attempt was made to fill in
those cells that lacked validated measures. The
attempt was successful in filling in fifteen
cells for which validated measures did not
previously exist. Additional measures were
added to five cells that may have previously
had incomplete measurement.

8. CONCLUSIONS

Often there are many metrics which attempt to
measure the same dimension of the same
level. The collection of measurement data is
very expensive [8]. However, the collection of
multiple measures to measure the same
dimension of the same level of software can
be useful. The collection of multiple measures
allows them to be compared to each other to
either confirm that they do indeed measure the
same dimension or establish that one (or
more) of them is measuring something other
than the dimension in question. Once it is
established which measure most cost
effectively measures the dimension in
question, it may not be necessary to collect the
other measures. If the measures in one cell are
not all measuring the same dimension, then
one or more of the measures may have been
miscataloged. It is left to the measurer to
determine which measures to use.

Though many of the fourteen dimensions
appear multiple times in the literature, they
may not be the dimensions that matter. There

may be other dimensions that do not yet have
metrics designed to measure them but which
must be measured in order to understand an
object-oriented artifact. Certainly all fourteen
dimensions will not matter for all levels. Once
cells are identified as being irrelevant they
should be Xed out or otherwise marked as
such. The same dimension measured on
different levels will almost certainly require
different measures or at least a different scope,

e.g., lines-of-code (LOC) in a program vs.
LOC in a system.

Some measures may be scaleable to levels
other than that level for which they were
designed. Measures that are scaleable are not
directly applicable as defined but may lend
themselves to being averaged or summed to
fill a cell at a higher level. No measures have
been found to be scaleable to cells at a lower
level.

Table 2: Object-Oriented Measures Taxonomy
 Level Ø
Dimension Ú

Variable Method Class Program System

Clarity CLM CLM CLM

Cohesion (1/(vfi+vfo+vp)) (local (mfi+mfo) /
total (mfi+mfo))

DMC
DCWO

DMC
DCWO

DMC
DCWO

Coupling (1-
(1/(vfi+vfo+vp)))

(remote(mfi+mfo) /
total (mfi+mfo))

UCGU
DCBO

UCGU
DCBO

UCGU
DCBO

Complexity,
inter-structural

remote vfi
remote vfo

remote mfi
remote mfo
remote I/Ov

NIM
PIM
RFC

AIM
PIM
RFC

AIM
PIM
RFC

Complexity,
intra-structural

local vfi
local vfo

SML
local mfi
local mfo
local I/Ov

IMC IMC IMC

Complexity,
psychological

MAA
I/Ov

MPC
WMC

MPC
WMC

MPC
WMC

Design PRC
NOM

PRC
FOC

PRC
FOC

Encapsulation FFU FFU FFU

Inheritance vfd mfd PMI
PMIS

DAC
NAC

DAC
NAC

Information hiding PrIM PrIM PrIM

Polymorphism vp mp (vp+mp)

Reuse vfi-1 mfi-1 RUS
CRE

 RUS
 CRE

 RUS
 CRE

Size LOC
AMS

LOC
AMS
NIV

LOC
AMS
AIV

LOC
AMS
AIV

Specialization POM
NCM
NMA

POM
NCM
NMA

POM
NCM
NMA

Measures from [18]
Measures from [6], [7], [16], and [17]

Metrics from [24]
Measures that can be scaled up to a higher level or derived from scales at a lower level

Future research

The taxonomy needs to be tested empirically.
If meaningful measures cannot be defined for
a cell, e.g., encapsulation of a variable, then
the cell should be expunged. Likewise, if
useful outside variables (performance,
schedule, or cost) cannot be defined against
which to test the measures of a cell then the
cell should be expunged. If all levels of a
dimension have been expunged, the entire row
(dimension) should be removed from the
taxonomy matrix. If, for whatever reason, a
new dimension becomes apparent, a new row
should be added to the taxonomy matrix. The
new dimension should then be populated with
validated measures. The measures as well as
the new dimension should be subjected to the
same rigorous testing, at all levels, as has
previously been defined for already existing
measures of already existing dimensions.
These steps need to take place iteratively until
software products and processes are more
clearly defined and understood.

REFERENCES

[1] Archer, Clark, and Michael Stinson, “Object-
Oriented Software Measures”, Technical Report
CMU/SEI-95-TR-002, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 1995.

[2] Baker, Albert L., James M. Bieman, Norman
Fenton, Davis A. Gustafson, Austin Melton, and Robin
Whitty, “A Philosophy of Software Measurement”, The
Journal of Systems and Software, Vol. 12, 1990, p.
277-281.

[3] Briand, Lionel C., Khaled El Eman, and
Sandro Morasca, “Theoretical and Empirical Validation
of Software Product Measures”, International Software
Engineering Research Network technical report
#ISERN-95-03, 1995a.

[4] Briand, Lionel C., Khaled El Eman, and
Sandro Morasca, “On the Application of Measurement

Theory in Software Engineering”, International
Software Engineering Research Network technical
report #ISERN-95-04, 1995b.

[5] Briand, Lionel C., Sandro Morasca, and Victor
R. Basili, “Property-Based Software Engineering
Measurement”, IEEE Transactions on Software
Engineering, Vol. 22, No. 1, 1996.

[6] Chen, J-Y, and J-F Lu, “A New Metric for
Object-Oriented Design”, Information and Software
Technology, p.232-240, 1993.

[7] Chidamber, Shyam R., and Chris F. Kemerer,
“A Metric Suite for Object Oriented Design”, IEEE
Transactions on Software Engineering, Vol. 20, No. 6,
June 1994.

[8] Deutsch, Michael S., and Ronald R. Willis,
Software Quality Engineering: A Total Technical and
Management Approach, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[9] Fenton, Norman, Software Metrics: A
Rigorous Approach, Chapman & Hall, London, UK,
1991.

[10]Fenton, Norman, “Software Measurement: A
Necessary Scientific Basis”, IEEE Transactions on
Software Engineering, Vol. 20, No. 3, March 1994.

[11]Grady, Robert B., and Deborah L. Caswell,
Software Metrics: Establishing A Company-Wide
Program, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1987.

[12]Henderson-Sellers, B., A Book of Object-Oriented
Knowledge, Prentice Hall, NY, 1992.

[13]Hitz, Martin, and Behzad Montazeri, “Chidamber
and Kemerer’s Metric Suite: A Measurement Theory
Perspective”, IEEE Transactions on Software
Engineering, Vol. 22, No. 4, April 1996.

[14]Hong, Sa Neung, Michael V. Mannino, and Betsy
Greenberg, “Measurement Theoretic Representation of
Large, Diverse Model Bases”, Decision Support
Systems, 10, 1993.

[15]Kyburg, Henry E., Jr., Theory and Measurement,
Cambridge University Press, Cambridge, UK, 1984.

[16]Li, Wei, and Sallie Henry, “Object-Oriented
Metrics that Predict Maintainability”, Journal of
Systems and Software, Vol 23, p.111-122, 1993.

[17]Lorenz, Mark, and Jeff Kidd, Object-Oriented
Software Metrics, Prentice Hall, Englewood Cliffs, NJ,
1994.

[18]Neal, R.D., The Validation of Proposed Object-
Oriented Software Metrics By Measurement Theory,
Virginia Commonwealth University, Dissertation.

[19]Roberts, Fred S., Measurement Theory with
Applications to Decisionmaking, Utility, and the Social
Sciences, Addison-Wesley Publishing Company,
Reading Massachusetts, 1979.

[20]Rumbaugh, James, Michael Blaha, William
Premerlani, Frederick Eddy, and William Lorensen,
Object-Oriented Modeling and Design, Prentice Hall,
Englewood Cliffs, NJ, 1991.

[21]Schneidewind, Norman F., “Methodology for
Validating Software Metrics”, IEEE Transactions on
Software Engineering, Vol. 18, No. 5, May 1992a.

[22]Smith, David N., Concepts of Object-Oriented
Programming, McGraw-Hill, NY, 1991.

[23]Sully, Phil, Modeling the World with Objects,
Prentice Hall, NY, 1993.

[24]Tegarden, David P., Steven D. Sheetz, and David
E. Monarchi, “A Software Complexity Model of
Object-Oriented Systems”, Decision Support Systems
13, p. 241-62, 1995.

[25]Tukey, John, “Data Analysis and Behavioral
Science or Learning to Bear the Quantitative Man’s
Burden by Shunning Badmandments”, The Collected
Works of John W. Tukey, Vol.III,Wadsworth, 1986.

[26]Vollman, Thomas E., “Software Quality
Assessment and Standards”, Computer, June 1993.

[27]Weyuker, Elaine J., “Evaluating Software
Complexity Measures”, IEEE Transactions on Software
Engineering, Vol. 14, No. 9, September 1988.

[28]Zuse, Horst, Software Complexity: Measures and
Methods, Walter de Gruyter, Berlin, 1990.

[29]Zuse, Horst, “Foundations of Validation,

Prediction, and Software Measures”, Annual Oregon

Workshop on Software Metrics, April 20-22, 1994.

[30]Zuse, Horst, “Foundations of Object-Oriented
Software Measures”, Proceedings of the Third
International Software Metrics Symposium, March
1996.

Ralph D. (Butch) Neal is a research associate
at the National Aeronautics and Space
Administration (NASA)/ West Virginia
University (WVU)
Independent Verification
and Validation (IV&V)
Facility in Fairmont West
Virginia. Butch has over 30
years experience in data
processing mostly from a
business perspective. He
was president of Augusta Computer Systems (
a small software development company)
before returning to school. He has a BA and
an MBA from WVU and a Ph.D. from Virginia
Commonwealth University. Research
interests include software measurement (s/m)
for reuse, s/m for quality control, and s/m of
rapid software development processes.

